Song Liang Chua Thesis Statements

On By In 1

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4, 447–450 (2010).
[Crossref]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 81, 687–702 (2010).
[Crossref]

J. Bravo-Abad, A. W. Rodriguez, J. D. Joannopoulos, P. T. Rakich, S. G. Johnson, and M. Soljac̆ić, “Efficient low-power terahertz generation via on-chip triply-resonant nonlinear frequency mixing,” Appl. Phys. Lett. 96, 101110 (2010).
[Crossref]

J. Bravo-Abad, E. P. Ippen, and M. Soljac̆ić, “Ultrafast photodetection in an all-silicon chip enabled by two-photon absorption,” Appl. Phys. Lett. 94, 241103 (2009).
[Crossref]

H. Hashemi, A. W. Rodriguez, J. D. Joannopoulos, M. Soljac̆ić, and S. G. Johnson, “Nonlinear harmonic generation and devices in doubly-resonant Kerr cavities,” Phys. Rev. A 79, 013812 (2009).
[Crossref]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629 (2009).
[Crossref] [PubMed]

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320, 643–646 (2008).
[Crossref] [PubMed]

H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, and S. Noda, “GaN photonic crystal surface-emitting laser at blue-violet wavelengths,” Science 319, 445–447 (2008).
[Crossref]

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance-driven random lasing,” Nat. Photonics 2, 429–432 (2008).
[Crossref]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[Crossref]

T. Lu, C. Kao, H. Kuo, G. Huang, and S. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92, 141102 (2008).
[Crossref]

L. Ge, R. Tandy, A. D. Stone, and H. E. Türeci, “Quantitative Verification of Ab Initio Self-Consistent Laser Theory,” Opt. Express 16, 16895 (2008).
[Crossref] [PubMed]

R. E. Hamam, M. Ibanescu, E. J. Reed, P. Bermel, S. G. Johnson, E. Ippen, J. D. Joannopoulos, and M. Soljac̆ić, “Purcell effect in nonlinear photonic structures: A coupled mode theory analysis,” Opt. Express 16, 12523–12537 (2008).
[Crossref] [PubMed]

J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljac̆ić, “Enhanced non-linear optics in photonic-crystal microcavities,” Opt. Express 15, 16161–16176 (2007).
[Crossref] [PubMed]

M. T. Hill, Y. -S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. -H. Kwon, Y.- H. Lee, R. Notzel, and M. K. Smit, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1, 449–458 (2007).
[Crossref]

P. Bermel, E. Lidorikis, Y. Fink, and J. D. Joannopoulos, “Active materials embedded in photonic crystals and coupled to electromagnetic radiation,” Phys. Rev. B 73, 165125 (2006).
[Crossref]

H. E. Türeci, A. D. Stone, and B. Collier, “Self-consistent multimode lasing theory for complex or random lasing media,” Phys. Rev. A 74, 043822 (2006).
[Crossref]

B. Bakir, C. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Cioccio, and J. Fedeli, “Surface-emitting micro-laser combining two-dimensional photonic crystal membrane and vertical Bragg mirror,” Appl. Phys. Lett. 88, 081113 (2006).
[Crossref]

H. Altug, D. Englund, and J. Vuckovic, “Ultra-fast photonic-crystal nanolasers,” Nat. Phys. 2, 485–488 (2006).
[Crossref]

H.- G. Park, S.- H. Kim, S.- H. Kwon, Y. -G. Ju, J.- K. Yang, J.- H. Baek, S. -B. Kim, and Y.- H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref] [PubMed]

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85, 3889–3891 (2004).
[Crossref]

H. Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, “Large spontaneous emission factor (> 0.1) in the photonic crystal monopole-mode laser,” Appl. Phys. Lett. 84, 1067–1069 (2004).
[Crossref]

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40, 1511–1518 (2004).
[Crossref]

D. J. Bergman and M. L. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[Crossref] [PubMed]

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421, 241–245 (2003).
[Crossref] [PubMed]

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65, 195306 (2002).
[Crossref]

J. C. Johnson, H.- J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1, 106–110 (2002).
[Crossref]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[Crossref]

M. Soljac̆ić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in non-linear photonic crystals,” Phys. Rev. E 66, 055601 (2002).
[Crossref]

T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B 63, 125107 (2001).
[Crossref]

A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78, 563–565 (2001).
[Crossref]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[Crossref] [PubMed]

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86, 4524–4527 (2001).
[Crossref] [PubMed]

X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett. 85, 70–73 (2000).
[Crossref] [PubMed]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[Crossref] [PubMed]

A. S. Nagra and R. A. York, “FDTD analysis of wave propagation in nonlinear absorbing and gain media,” IEEE Trans. Antennas Propag. 46, 334–340 (1998).
[Crossref]

C. Gmachl, F. Capasso, E.E. Narimanov, J.U. Nöckel, A. D. Stone, J. Faist, D. Sivco, and A. Cho, “High power directional emission from lasers with chaotic resonators,” Science 280, 1556–64 (1998).
[Crossref] [PubMed]

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
[Crossref]

S. D. Glauber, “An anisotropic perfectly matched layer absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996).
[Crossref]

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[Crossref]

H. Yokoyama, “Physics and device applications of optical microcavities,” Science 256, 66–70 (1992).
[Crossref] [PubMed]

S. Haroche and D. Kleppner, “Cavity quantum electrodynamics,” Phys. Today 42, 24–30 (1989).
[Crossref]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[Crossref]

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
[Crossref]

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421, 241–245 (2003).
[Crossref] [PubMed]

H. Altug, D. Englund, and J. Vuckovic, “Ultra-fast photonic-crystal nanolasers,” Nat. Phys. 2, 485–488 (2006).
[Crossref]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1, 449–458 (2007).
[Crossref]

T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature,” Appl. Phys. Lett. 85, 3889–3891 (2004).
[Crossref]

Writing thesis statements

Ernest Hemingway once wrote a short story in two sentences and 6 words. He, apparently, claimed it to be the best short story he ever wrote. In these two sentences we can find a whole world of drama. It reads:

For sale: baby shoes. Never worn.

This “short story” can serve as an example of the kind of condensation a thesis statement should have. A thesis statement provides the core idea or argument that you spend the pages of your paper unfolding. In Hemingway’s statement we are not told what has actually happened but it contains a direction, a central idea, that will be unfolded throughout the story. Gordon Harvey from Harvard University points to this as well. He defines a thesis in the following way:

Thesis: your main insight or idea about a text or topic, and the main proposition that your essay demonstrates. It should be true but arguable (not obviously or patently true, but one alternative among several), be limited enough in scope to be argued in a short composition and with available evidence, and get to the heart of the text or topic being analyzed (not be peripheral). It should be stated early in some form and at some point recast sharply (not just be implied), and it should govern the whole essay (not disappear in places). [Our underlining].

Keeping Harvey’s definition in mind you can start working on creating your thesis. The following steps can help you do this.

  1. Determine what kind of paper you are writing:
    • An analytical paper breaks down an issue or an idea into its component parts, evaluates the issue or idea, and presents this breakdown and evaluation to the audience. A paper in music theory or history could be an example of an analytical paper.
    • An expository (explanatory) paper explains something to the audience. A paper in music education could be an example of an expository paper explaining a particular pedagogical approach to music, for example.
    • An argumentative paper makes a claim about a topic and justifies this claim with specific evidence. The claim could be an opinion, a policy proposal, an evaluation, a cause-and-effect statement, or an interpretation. The goal of the argumentative paper is to convince the audience that the claim is true based on the evidence provided. A review of a musical performance would be argumentative.
    If you are writing a text that does not fall under these three categories (ex. a narrative, reading journal, self-evaluation for example), a thesis statement somewhere in the first paragraph could still be helpful to your reader.
  2. Your thesis statement should be specific - it should cover only what you will discuss in your paper and should be supported with specific evidence.
  3. The thesis statement usually appears somewhere in the first paragraph of a paper. You might want to avoid the somewhat formulaic “in this paper I argue that...“ though keeping that line in mind is a good idea because, basically, that is what you are saying.
  4. Your topic may change as you write, so you may need to revise your thesis statement to reflect exactly what you have discussed in the paper.

Different genres demand different thesis statements

Analytical thesis statement

This paper would present an analysis of the source material used. This could be a literature review, for example.

Example of an analytical thesis statement:

Chopin greatly admired the music of J.S. Bach, and his Preludes reflect the influence of The Well-Tempered Clavier.

This paper would discuss and analyze relations between Chopin’s Preludes and Bach’s Well-Tempered Clavier.

Expository (explanatory) thesis statement

This paper would explain the material the thesis promises to explore.

Example of an expository thesis statement:

The approaches to teaching music to children developed by Orff, Kodaly, and Dalcroze are different and unique.

The paper would go on to explain, compare and contrast the three approaches.

Argumentative thesis statement

This paper would present an argument and present enough evidence to support the claim and convince a reader.

Example of an argumentative thesis statement:

Playing Mozart’s music on the fortepiano, the instrument as it existed in his own time, conveys a very different impression of his music than playing it on a modern piano.

This paper would go on to present evidence to support this claim.

0 comments

Leave a Reply

Your email address will not be published. Required fields are marked *